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Abstract—Cryptarithmetic problem has many ways to 
solve using different algorithm. In this paper we proposed a 
solution to a problem using Parallel Genetic algorithm and 
Evolutionary algorithm for comparison and assessment of a 
cryptarithmetic problem. Comparison can be done in terms of 
execution times of both the algorithm in milliseconds with 
respect to the different numbers of variable. The result shows 
using chart shows that the Parallel genetic algorithm takes 
lesser time for execution than evolutionary algorithm.  
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INTRODUCTION 
Cryptarithmetic, also known as cryptarithm, alphametics, 
verbal arithmetic or word addition are puzzles in which a 
set of words is written down in the form of a long addition 
sum or some other mathematical problems that produces a 
sensible phrase and words formed by the operands[1].The 
object is to replace the letters of the alphabet with decimal 
digits to make a valid arithmetic sum.The equation is 
typically a basic operation of arithmetic such as addition, 
multiplication or division[2].The classic example,published 
in July 1924 issue of Strand Magazine by “Henry 
Dudeney” is: 

S   E  N  D 

 +    M  O  R  E 

M O  N  E  Y 

The solution to this cryptarithmetic puzzle is S=9, E=5, 
N=6, D=7, M=1, O=0, R=8, Y=2. 

The Solution for this puzzle is shown as: 

9 5 6 7  

   + 1 0 8 5 

  1 0 6 5 2 

Each letter in this puzzle assigns different decimal digits. A 
good puzzle should have a unique solution and letters 
should make up a phrase. As, In the above example, The 
words made a phrase “Send More Money”.  

I. LITERATURE REVIEW 

A. Constraints Satisfaction problem 

Constraints satisfication problem are a special kind of 
problem where States defined by values of a fixed set of 
variables and Goal test defined by constraints on variable 
values. 

a) Problem definition

A CSP consists of: 

 A set of variables X = f{x1,...,xn}.

 For each variable xi, a definite set Di of
possible values (its domain).

 A set of constraints restricting the values that
the variables can simultaneously take.

A feasible solution to a Constraints Satisfication 
Problem  is an assignment of a value from its domain to 
every variable, in such a way that every constraint is 
satisfied. In this case, the problem is satisfiable. On the 
other hand, if there is no assignment of values to 
variables from their respective domains for which all 
constraints are satisfied, then the problem is 
unsatisfiable [3] 

Algorithms for solving CSPs are aimed at simply 
finding a feasible solution, they can be adapted to 
finding an optimal solution. For instance, an objective 
variable can be created to represent the objective 
function, an initial solution is found, and then a new 
constraint is introduced specifying that the value of the 
objective variable must be better than in the initial 
solution. This is done repeatedly, tightening the 
constraint on the objective variable as each solution is 
found. The number of iterations, and therefore the 
computation time, depends on the quality of the initial 
solution. A common practice is to apply a heuristic 
method for generating an initial solution.[4] 

b) Evaluation of constraint satisfaction

In this section, the evaluation of Constraints 
Problem as a technique for solving Constraints 
Satisfaction problem, and compare it with two different 
methods. Two general comparative papers, written from 
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an AI standpoint, are those of Van Hentenryck (1995) 
and Simonis (1996). The former considers various 
techniques for solving combinatorial search problems, 
such as branch and bound, branch and cut, and local 
search, and compares them with CP. Simonis concludes 
that there are four areas where CP is most successful - 
scheduling, allocation, transportation and rostering. One 
of the practical reasons for this success is the ease with 
which additional problem-specific constraints can be 
added without any need to revise the whole program. 

c) Criteria for Evaluation 

There are various reasons why a particular technique 
may be chosen for a problem, including: 

 Ease of implementation. 

 Flexibility to handle a variety of constraints 
that occur in practical problems. 

 Computation time. 

 Solution quality. 

II. EVOLUTION OF CRYPTARITHMETIC 

Cryptarithm is a genre of mathematical puzzle in which the 
digits are replaced by letters of the alphabet or other 
symbols. Cryptarithmetic is the science and art of creating 
and solving cryptarithms.  

Cryptarithmetic puzzles are quite old and their inventor 
is not known. An example in The American Agriculturist of 
1864 disproves the popular notion that it was invented by 
Sam Loyd. The name cryptarithmetic was coined by 
puzzlist Minos (pseudonym of Maurice Vatriquant) in the 
May 1931 issue of Sphinx, a Belgian magazine of 
recreational mathematics. In the 1955, J. A. H. Hunter 
introduced the word "alphabetic" to designate cryptarithms, 
such as Dudeney's, whose letters from meaningful words or 
phrases. Solving a cryptarithm by hand usually involves a 
mix of deductions and exhaustive tests of possibilities. 

  Cryptarithmetic is a class of constraint satisfaction 
problems which includes making mathematical relations 
between meaningful words using simple arithmetic 
operators like “+” in a way that the result is conceptually 
true, and assigning digits to the letters of these words and 
generating numbers in order to make correct arithmetic 
operations as well.[5] 

Types of cryptarithm include the alphametic, the digimetic, 
and the skeletal division. 

1. Alphametic - A type of cryptarithm in which a set of 
words is written down in the form of a long addition sum or 
some other mathematical problem. The object is to replace 
the letters of the alphabet with decimal digits to make a 
valid arithmetic sum. 

2. Digimetic - A cryptarithm in which digits are used to 
represent other digits. 

3. Skeletal division - A long division in which most or all 
of the digits are replaced by symbols to form a cryptarithm. 

b) Constraints to solve cryptarithmetic 

i) Each letter or symbol represents only one and a unique 
digit throughout the problem. 

 
ii) When the digits replace letters or symbols, the resultant 
arithmetical operation must be correct. 

  
iii) Total number of distinct letters should be less or equal 
to   10. 
 
 iv) Length of answer should not be lesser than the length 
of any operand. 
 
V) Length of answer can be only one more than any of the 
operands.[5] 
 

III. EVOLUTIONARY ALGORITHM 

An Evolutionary Algorithm (EA) is a common term for 
algorithms that utilize the adaptive behavior modeled after 
principles of nature. 

Although the definition of Evolutionary Algorithm differs, 
the more common properties of EAs are that collections of 
potential solutions to the problem at hand are maintained. 

These solutions are referred to as the population of a 
current generation. Each potential solution is called a 
chromosome. 

Operations are applied to the current population to produce 
a new generation that will hopefully contain chromosomes 
that are better solutions of the problem. This process 
continues until some threshold value or stopping criterion is 
met. 

The new population is produced through the operators on 
selected chromosomes of the current generation. 
Typically, the chromosomes of the current generation, to 
whom the operators are applied, are chosen based on their 
quality. In this way, it is more likely that the offspring 
chromosomes inherit desirable characteristics of its 
parents. Some heuristics or fitness functions are used to 
choose parent chromosomes in a generation.[6] 

a) Algorithm 
Step 1: Scan the input strings. 
Step 2: Check that the input is proper. 
Step 3: Put the letters or symbols in ARRAY[7]. 
Step 4: Apply arithmetic rules and try to reduce the 
solution     space. 
Step 5: If the number of distinct letter is less than 10, then 
fill the rest of the indices of ARRAY with don’t care 
symbols. This ARRAY now is our current generation. 
Step 6: For several times, generate two random numbers 
m, n and swap the contents of index m and n of any one 
chromosome of the current generation and copy this new 
chromosome to the next generation. 
Step 7: Evaluate the fitness of each chromosome of the 
next generation and choose the best chromosomes. Now 
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these best chromosomes become our current generation. 
Also include one random chromosome to the current 
generation. If there is no chromosome with error 0 in the 
current generation, then go to step 6. If one of the 
chromosomes is found with error 0, then report the 
solution and exit. 
 
Problem SEND+MORE=MONEY 

Answer 9567+1085=10652 

Time 
Min (ms) Max(ms) Avg(ms) 

188 980 690 
 

Table 3.1. Result of evolutionary algorithm 
 

IV. GENETIC ALGORITHM 

Genetic Algorithms (GAs) are search algorithms 
inspired by genetics and natural selection . These 
algorithms are powerful search techniques that are used to 
solve difficult problems in many disciplines. Unfortunately, 
they can be very demanding in terms of computation load 
and memory.  

Parallel Genetic Algorithms (PGAs) are parallel 
implementations of GAs which can provide considerable 
gains in terms of performance and scalability.  

The most important advantage of PGAs is that in many 
cases they provide better performance than single 
population-based algorithms, even when the parallelism is 
simulated on conventional machines .[7] 
  
The new population is then used in the next iteration of the 
algorithm. Commonly, the algorithm terminates when 
either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached 
for the population. If the algorithm has terminated due to a 
maximum number of generations, a satisfactory solution 
may or may not have been reached. Genetic algorithms find 
application in bioinformatics, computational science, 
engineering, economics, chemistry, manufacturing, 
mathematics, physics and other fields.[8] 
 
A typical genetic algorithm requires:  

 A genetic representation of the solution domain,  
 A fitness function to evaluate the solution domain.  

 
a) Algorithm 

Step 1: Extract distinct letters from input strings and put 
them in a list named L.  
Step 2: Repeat the following until the desired population 
size is reached:  

 A.For each letter in L do the following:  

2.1. Generate a random number between 0 and 9.  
2.2. If the random number is equal to zero and the 

letter is the beginning letter of the words (which should not 
be zero) go to 2.4.  

2.3. If the cell that is corresponding the random 
number is empty, put the letter into that cell, else go to step 
2.1.  

2.4. If the current letter is the last letter of L and 
the length of L is 10 then generate a random number 
between 1 and 9 and exchange the place of the letter from 
that cell to the index of zero and the current letter to that 
position. Keep doing it until the second letter is not a 
beginning letter of the words. Else go to step 2.1.  
B. Calculate the fitness of this new individual.  
C. Add the individual into the right place in the inner 
population list [9].   
 

Problem SEND+MORE=MONEY 

Answer 9567+1085=10652 

Time 
Min (ms) Max(ms) Avg(ms) 

180 974 680 

 
Table 5.1. Result of parallel genetic algorithm 

 

V. RESULT FOR COMPARISION ON GENETIC PARALLEL 

ALGORITHM AND EVOLUTIONARY ALGORITHM 

This paper proposed an efficient evolutionary algorithm to 
solve decimal Cryptarithmetic problems and compares the 
proposed algorithm with parallel genetic algorithm to solve 
them. First we will review some basics of GAs and EA then 
the proposed algorithm will be formulated and discussed in 
detail.[10-21]  

0

20

40

60

80

100

120

3 4 5 6 7

PGA

EVOL

 Figure 6.1 Comparison chart of time(ms) 

 
VI. CONCLUSION 

This paper evaluates the two different algorithm to solve a 
cryptarithmetic problem in the terms of their execution 
times and shows the result using a chart to compare the 
execution time which indicates that the Parallel Genetic 
algorithm takes lesser time than evolutionary algorithm.  

Var Num 3 4 5 6 7 
PGA 

Time(ms) 
1.112 8.122 10.455 15.335 1.112 

Evol 
Time(ms) 

45.32 60.34 90.77 100.77 45.32 

 
Table 5.1 Comparison of PGA and Evolutionary run times 
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