
Comparision and Assesment of Evolutionary and
Parallel Genetic Algorithms for a Cryptarithmetic

Problem
Dr. J P PATRA

Associate professor, Dept. of CSE
SSIPMT, Raipur

Nayan Shivhare
Department of Computer Science and Engineering

SSIPMT
Raipur(C.G),India

Shraddha Verma
Department of Computer Science and Engineering

SSIPMT
Raipur(C.G),India

Abstract—Cryptarithmetic problem has many ways to
solve using different algorithm. In this paper we proposed a
solution to a problem using Parallel Genetic algorithm and
Evolutionary algorithm for comparison and assessment of a
cryptarithmetic problem. Comparison can be done in terms of
execution times of both the algorithm in milliseconds with
respect to the different numbers of variable. The result shows
using chart shows that the Parallel genetic algorithm takes
lesser time for execution than evolutionary algorithm.

Keywords— cryptarithm, alphametics , Genetic Algorithms,
Parallel Genetic Algorithms, Evolutionary

INTRODUCTION
Cryptarithmetic, also known as cryptarithm, alphametics,
verbal arithmetic or word addition are puzzles in which a
set of words is written down in the form of a long addition
sum or some other mathematical problems that produces a
sensible phrase and words formed by the operands[1].The
object is to replace the letters of the alphabet with decimal
digits to make a valid arithmetic sum.The equation is
typically a basic operation of arithmetic such as addition,
multiplication or division[2].The classic example,published
in July 1924 issue of Strand Magazine by “Henry
Dudeney” is:

S E N D

 + M O R E

M O N E Y

The solution to this cryptarithmetic puzzle is S=9, E=5,
N=6, D=7, M=1, O=0, R=8, Y=2.

The Solution for this puzzle is shown as:

9 5 6 7

 + 1 0 8 5

 1 0 6 5 2

Each letter in this puzzle assigns different decimal digits. A
good puzzle should have a unique solution and letters
should make up a phrase. As, In the above example, The
words made a phrase “Send More Money”.

I. LITERATURE REVIEW

A. Constraints Satisfaction problem

Constraints satisfication problem are a special kind of
problem where States defined by values of a fixed set of
variables and Goal test defined by constraints on variable
values.

a) Problem definition

A CSP consists of:

 A set of variables X = f{x1,...,xn}.

 For each variable xi, a definite set Di of
possible values (its domain).

 A set of constraints restricting the values that
the variables can simultaneously take.

A feasible solution to a Constraints Satisfication
Problem is an assignment of a value from its domain to
every variable, in such a way that every constraint is
satisfied. In this case, the problem is satisfiable. On the
other hand, if there is no assignment of values to
variables from their respective domains for which all
constraints are satisfied, then the problem is
unsatisfiable [3]

Algorithms for solving CSPs are aimed at simply
finding a feasible solution, they can be adapted to
finding an optimal solution. For instance, an objective
variable can be created to represent the objective
function, an initial solution is found, and then a new
constraint is introduced specifying that the value of the
objective variable must be better than in the initial
solution. This is done repeatedly, tightening the
constraint on the objective variable as each solution is
found. The number of iterations, and therefore the
computation time, depends on the quality of the initial
solution. A common practice is to apply a heuristic
method for generating an initial solution.[4]

b) Evaluation of constraint satisfaction

In this section, the evaluation of Constraints
Problem as a technique for solving Constraints
Satisfaction problem, and compare it with two different
methods. Two general comparative papers, written from

ISSN:0975-9646

J P PATRA et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 503-506

www.ijcsit.com 503

an AI standpoint, are those of Van Hentenryck (1995)
and Simonis (1996). The former considers various
techniques for solving combinatorial search problems,
such as branch and bound, branch and cut, and local
search, and compares them with CP. Simonis concludes
that there are four areas where CP is most successful -
scheduling, allocation, transportation and rostering. One
of the practical reasons for this success is the ease with
which additional problem-specific constraints can be
added without any need to revise the whole program.

c) Criteria for Evaluation

There are various reasons why a particular technique
may be chosen for a problem, including:

 Ease of implementation.

 Flexibility to handle a variety of constraints
that occur in practical problems.

 Computation time.

 Solution quality.

II. EVOLUTION OF CRYPTARITHMETIC

Cryptarithm is a genre of mathematical puzzle in which the
digits are replaced by letters of the alphabet or other
symbols. Cryptarithmetic is the science and art of creating
and solving cryptarithms.

Cryptarithmetic puzzles are quite old and their inventor
is not known. An example in The American Agriculturist of
1864 disproves the popular notion that it was invented by
Sam Loyd. The name cryptarithmetic was coined by
puzzlist Minos (pseudonym of Maurice Vatriquant) in the
May 1931 issue of Sphinx, a Belgian magazine of
recreational mathematics. In the 1955, J. A. H. Hunter
introduced the word "alphabetic" to designate cryptarithms,
such as Dudeney's, whose letters from meaningful words or
phrases. Solving a cryptarithm by hand usually involves a
mix of deductions and exhaustive tests of possibilities.

 Cryptarithmetic is a class of constraint satisfaction
problems which includes making mathematical relations
between meaningful words using simple arithmetic
operators like “+” in a way that the result is conceptually
true, and assigning digits to the letters of these words and
generating numbers in order to make correct arithmetic
operations as well.[5]

Types of cryptarithm include the alphametic, the digimetic,
and the skeletal division.

1. Alphametic - A type of cryptarithm in which a set of
words is written down in the form of a long addition sum or
some other mathematical problem. The object is to replace
the letters of the alphabet with decimal digits to make a
valid arithmetic sum.

2. Digimetic - A cryptarithm in which digits are used to
represent other digits.

3. Skeletal division - A long division in which most or all
of the digits are replaced by symbols to form a cryptarithm.

b) Constraints to solve cryptarithmetic

i) Each letter or symbol represents only one and a unique
digit throughout the problem.

ii) When the digits replace letters or symbols, the resultant
arithmetical operation must be correct.

iii) Total number of distinct letters should be less or equal
to 10.

 iv) Length of answer should not be lesser than the length
of any operand.

V) Length of answer can be only one more than any of the
operands.[5]

III. EVOLUTIONARY ALGORITHM

An Evolutionary Algorithm (EA) is a common term for
algorithms that utilize the adaptive behavior modeled after
principles of nature.

Although the definition of Evolutionary Algorithm differs,
the more common properties of EAs are that collections of
potential solutions to the problem at hand are maintained.

These solutions are referred to as the population of a
current generation. Each potential solution is called a
chromosome.

Operations are applied to the current population to produce
a new generation that will hopefully contain chromosomes
that are better solutions of the problem. This process
continues until some threshold value or stopping criterion is
met.

The new population is produced through the operators on
selected chromosomes of the current generation.
Typically, the chromosomes of the current generation, to
whom the operators are applied, are chosen based on their
quality. In this way, it is more likely that the offspring
chromosomes inherit desirable characteristics of its
parents. Some heuristics or fitness functions are used to
choose parent chromosomes in a generation.[6]

a) Algorithm
Step 1: Scan the input strings.
Step 2: Check that the input is proper.
Step 3: Put the letters or symbols in ARRAY[7].
Step 4: Apply arithmetic rules and try to reduce the
solution space.
Step 5: If the number of distinct letter is less than 10, then
fill the rest of the indices of ARRAY with don’t care
symbols. This ARRAY now is our current generation.
Step 6: For several times, generate two random numbers
m, n and swap the contents of index m and n of any one
chromosome of the current generation and copy this new
chromosome to the next generation.
Step 7: Evaluate the fitness of each chromosome of the
next generation and choose the best chromosomes. Now

J P PATRA et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 503-506

www.ijcsit.com 504

these best chromosomes become our current generation.
Also include one random chromosome to the current
generation. If there is no chromosome with error 0 in the
current generation, then go to step 6. If one of the
chromosomes is found with error 0, then report the
solution and exit.

Problem SEND+MORE=MONEY

Answer 9567+1085=10652

Time
Min (ms) Max(ms) Avg(ms)

188 980 690

Table 3.1. Result of evolutionary algorithm

IV. GENETIC ALGORITHM

Genetic Algorithms (GAs) are search algorithms
inspired by genetics and natural selection . These
algorithms are powerful search techniques that are used to
solve difficult problems in many disciplines. Unfortunately,
they can be very demanding in terms of computation load
and memory.

Parallel Genetic Algorithms (PGAs) are parallel
implementations of GAs which can provide considerable
gains in terms of performance and scalability.

The most important advantage of PGAs is that in many
cases they provide better performance than single
population-based algorithms, even when the parallelism is
simulated on conventional machines .[7]

The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached
for the population. If the algorithm has terminated due to a
maximum number of generations, a satisfactory solution
may or may not have been reached. Genetic algorithms find
application in bioinformatics, computational science,
engineering, economics, chemistry, manufacturing,
mathematics, physics and other fields.[8]

A typical genetic algorithm requires:

 A genetic representation of the solution domain,
 A fitness function to evaluate the solution domain.

a) Algorithm

Step 1: Extract distinct letters from input strings and put
them in a list named L.
Step 2: Repeat the following until the desired population
size is reached:

 A.For each letter in L do the following:

2.1. Generate a random number between 0 and 9.
2.2. If the random number is equal to zero and the

letter is the beginning letter of the words (which should not
be zero) go to 2.4.

2.3. If the cell that is corresponding the random
number is empty, put the letter into that cell, else go to step
2.1.

2.4. If the current letter is the last letter of L and
the length of L is 10 then generate a random number
between 1 and 9 and exchange the place of the letter from
that cell to the index of zero and the current letter to that
position. Keep doing it until the second letter is not a
beginning letter of the words. Else go to step 2.1.
B. Calculate the fitness of this new individual.
C. Add the individual into the right place in the inner
population list [9].

Problem SEND+MORE=MONEY

Answer 9567+1085=10652

Time
Min (ms) Max(ms) Avg(ms)

180 974 680

Table 5.1. Result of parallel genetic algorithm

V. RESULT FOR COMPARISION ON GENETIC PARALLEL

ALGORITHM AND EVOLUTIONARY ALGORITHM

This paper proposed an efficient evolutionary algorithm to
solve decimal Cryptarithmetic problems and compares the
proposed algorithm with parallel genetic algorithm to solve
them. First we will review some basics of GAs and EA then
the proposed algorithm will be formulated and discussed in
detail.[10-21]

0

20

40

60

80

100

120

3 4 5 6 7

PGA

EVOL

 Figure 6.1 Comparison chart of time(ms)

VI. CONCLUSION

This paper evaluates the two different algorithm to solve a
cryptarithmetic problem in the terms of their execution
times and shows the result using a chart to compare the
execution time which indicates that the Parallel Genetic
algorithm takes lesser time than evolutionary algorithm.

Var Num 3 4 5 6 7
PGA

Time(ms)
1.112 8.122 10.455 15.335 1.112

Evol
Time(ms)

45.32 60.34 90.77 100.77 45.32

Table 5.1 Comparison of PGA and Evolutionary run times

J P PATRA et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 503-506

www.ijcsit.com 505

REFERENCES
[1] H. E. Dudeney, in Strand Magazine vol. 68 (July 1924), pp. 97 and

214.

[2] Vinod Goel, Sketches of thought, MIT Press, 1995, pp. 87 and 88.

[3] Van Hentenryck, P., 1995. Constraint solving for combinatorial
search problems: A tutorial. In: Montanari, U., Rossi, F. (Eds.),
Proceedings of The First Conference of Principles & Practice of CP,
Lecture Notes in Computer Science, vol. 976. Springer, Berlin, pp.
564±587.

[4] Simonis, H., 1996. A problem classi®cation scheme for unitedomain
constraint solving (tutorial paper given at PACT'96). In: Second
International Conference on the Practical Applications of Constraint
Technology.

[5] Bonnie Averbach and Orin Chein, Problem Solving Through
Recreational Mathematics, Courier Dover Publications, 2000, pp.
156.

[6] Abu Sayef Md. Ishaque, Md. Bahlul Haider, Muhammad Al
Mahmud Wasid, Shah Mohammed Alaul, Md. Kamrul Hassan,
Tanveer Ahsan, Md. Shamsul Alam: “An Evolutionary Algorithm to
Solve Cryptarithmetic Problem”, International Conference on
Computational Intelligence 2004: 494-496.

[7] David Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning,” Addison-Wesley, Reading, MA 1989.

[8] Mariusz Nowostawski, Riccardo Poli, “Parallel Genetic Algorithm
Taxonomy”, KES’99.

[9] Alippi, C., Filho, J.L.R., Treleaven, P.C. (1994), "Genetic-Algorithm
Programming Environments", IEEE Trans. Computer, June 1994.

[10] http://www.vincehuston.org/teaching/alphametics.html

[11] http://www.dcode.fr/cryptarithm-solver

[12] https://mysteriesexplored.wordpress.com/2011/08/24/amazing-
encryption-technology-in-ancient-india-the-katapayadi-shankya/

J P PATRA et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 503-506

www.ijcsit.com 506

